
Bose realization for non-canonical representations of the symplectic group Sp(4) ⊃ SU(2) ×

U(1)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 1079

(http://iopscience.iop.org/0305-4470/35/4/319)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 02/06/2010 at 10:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 1079–1094 PII: S0305-4470(02)27532-0

Bose realization for non-canonical representations of
the symplectic group Sp(4) ⊃ SU(2) × U(1)

R A Tello-Llanos

Departamento de Formación General y Ciencias Básicas, Universidad Simón Bolı́var,
Apdo 89000, Caracas 1080A, Venezuela

E-mail: rtello@usb.ve

Received 2 August 2001, in final form 15 November 2001
Published 18 January 2002
Online at stacks.iop.org/JPhysA/35/1079

Abstract
A new method is formulated for the construction of arbitrary unitary irreducible
representations of the compact symplectic group Sp(4) ∼ O(5) in orthonormal
bases which are reduced with respect to the non-canonical group chain
Sp(4) ⊃ SU(2) × U(1). The method is based on a realization of the algebra
of generators and basis states by means of a system of Bose creation and
annihilation operators. As an illustration, some series of representations
with multiplicities equal to, or less than, three are given in explicit algebraic
form.

PACS numbers: 02.20.−a, 21.60.−n

1. Introduction

The canonical representations of the compact symplectic group Sp(4) ∼ O(5) in bases fully
reduced with respect to the subgroup SU(2)×SU(2) have been completely established a long
time ago by Hecht [1], Sharp and Pieper [2] and Kemmer et al [3], with the use of different
methods. However, in physical applications, the reduction with respect to other non-canonical
chains has become more natural. One of those is the chain Sp(4) ⊃ SU(2) × U(1), which
arises, for example, in the classification of states in a nuclear j-shell as was established
by Helmers [4], Flowers and Szpikowski [5] and Parikh [6]. The construction of the
representations for this last scheme has been a difficult task because of the lack of one label for
the complete specification of the basis states within an irreducible representation. Nevertheless,
specific series of representations were derived in the past by Hecht [7, 9], Hemenger and Hecht
[10], and by Szpikowski [8]. In particular all representations with multiplicities two or less
were explicitly obtained in closed algebraic form. The construction of bases for generic
representations was investigated by Ahmed and Sharp [11], Smirnov and Tolstoy [12] and by
Szpikowski and Berej [17]. They derived explicit, though different, systems of basis vectors.
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Unfortunately, the bases were non-orthogonal and the transformation to the orthogonal bases
was equivalent to the diagonalization of a missing label operator, a task that can be afforded
only numerically and only for specific representations. A solution to the present missing
label problem was given in principle by Hecht and Elliot [13] extending the method of vector
coherent states to the present problem (see also [14, 15]). They obtained a non-unitary or
Dayson realization of the so(5) algebra, and then derived the unitary or Holstein–Primakoff
realization via a similarity transformation with the operator K of the coherent state theory.
However, their method depends on the diagonalization of the K-matrix, and this has been
done algebraically only for representations with maximum two-fold multiplicity, and for some
particular states of arbitrary representations. In general, the diagonalization can be performed
only numerically for specific, though arbitrary, representations.

The continuous interest in the theory of representations of the symplectic group Sp(4)

can be demonstrated by the very recent investigation of Sviratcheva et al [16], where
fermion realizations of the sp(4) algebra, as well as its q-deformations, are obtained. They
considered canonical and non-canonical realizations. However, in the case of the reduction
Sp(4) ⊃ SU(2) × U(1) considered here, they give only the realization of a particular series
of symmetric representations, denoted below as 〈q, q〉 (q = j + 1/2 in their notation).

In the present paper, a method for the construction of arbitrary unitary irreducible
representations is presented. Even though the method is appropriate for numerical
computations, the algebraic expressions can be derived with relative ease, depending only
on the solution of a system of linear homogeneous algebraic equations for each arbitrary series
of representations 〈q + p, q〉, with q any positive integer and p = 1, 2, . . . . This approach
represents a different and more explicit solution to the present missing label problem, in a
form that can be useful for physical applications. The method is based on a Bose realization
of the representation space and the generators of the group (Jordan–Schwinger mapping), and
makes a straightforward use of the su(2) tensor algebra. Some examples of the derivations are
presented, including the series 〈q + 4, q〉 with multiplicities equal to, or less than, 3.

Following Bincer [18], let us denote the generators of Sp(4) as Ga
b , a, b = −2, . . . , 2, zero

excluded. They satisfy the identities Ga
b = −εaεbG−b

−a , with εa ≡ a/|a|. The commutation
relations of the algebra have the form

[
Ga

b, Gc
d

] = δc
bG

a
d − δa

dGc
b + εaεb

(
δ−b

d Gc
−a − δc

−aG
−b
d

)
. (1)

In unitary representations Ga+
b = Gb

a . For convenience of the reader, the relation with the
O(5) Hermitian generators Ljk = −i(xj∇k − xk∇j ), j, k = 1, . . . , 5, is also given. Under
the reduction Sp(4) ⊃ SU(2) × U(1), the SU(2) generators are J0 = (

G1
1 − G2

2

)/
2 =

L34, J+ = G1
2 = L45 + iL53 and J− = G2

1 = L45 − iL53. The U(1) generator is
H = (

G1
1 + G2

2

)/
2 = L12. The remaining six generators define two irreducible vector

operators with respect to the SU(2) subgroup, one of which has the tensor components
U1 = G1

−1

/√
2 = [L14 +L23 +i(L24 +L31)]/

√
2, U0 = G1

−2 = L52 +iL15, U−1 = G2
−2

/√
2 =

[L14 −L23 + i(L24 −L31)]/
√

2, and the other, Hermitian conjugated to it, has the components
Vκ = (−1)κU+

−κ , κ = 0, ±1. The irreducible unitary representations can be labelled by
〈q + p, q〉, where q + p ≡ 2Jm and q ≡ 2�m are the eigenvalues of the operators G1

1 and
G2

2 in the highest weight state. The notation Jm, �m was introduced by Hecht [1]. There
are three available parameters for the identification of the basis states: the eigenvalues of the
commuting Hermitian operators J2, J0 and H , which will be denoted as j (j + 1), m and τ .
The necessary fourth parameter is missing; and this fact has been the essential problem in the
construction of the non-canonical representations. In the following, the matrices of the SU(2)

generators will be assumed given in the standard form, the matrix of H will be diagonal and
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the vector operators Uκ and Vκ will be defined through their reduced matrix elements as in the
expression (Wigner–Eckart)

〈α′τ ′j ′m′|Uκ |ατjm〉 = (−1)j ′−m′
(

j ′ 1 j

−m′ κ m

)
〈α′τ ′j ′‖U‖ατj 〉. (2)

In this definition the 〈q + p, q〉 dependence is implicit and the unknown label is denoted by
α. These reduced matrix elements satisfy a set of equations which follow directly from the
commutation relations of the algebra and are shown in the appendix.

In the following section the new method for the derivation of generic representations
〈q + p, q〉 is presented. It makes use of the reducible product of the multiplicity free
representations 〈p, 0〉 × 〈q, q〉. In section 3 specific examples with two- and three-fold
multiplicities are given.

2. The Bose realization

Boson realizations of Lie algebras have been applied extensively in the construction of arbitrary
representations in suitable chosen Hilbert spaces of bosonic states. A comprehensive review
of the different approaches, with applications to nuclear physics, was given by Klein and
Marshalek [19]. In particular, a calculus of Bose operators was applied by Holman [20] in the
construction of the canonical representations of Sp(4), taking into consideration that Sp(4)

is itself a subgroup of SU(4). In fact, the generators of Sp(4) can be expressed as linear
combinations of the Weyl generators Eij of SU(4):

H = (E11 − E22 + E33 − E44)/2 (3)

J0 = (E11 − E22 − E33 + E44)/2 J+ = E13 − E42 J− = E31 − E24 (4)

U0 = E14 + E32 U1 =
√

2E12 U−1 =
√

2E34 (5)

V0 = E41 + E23 V1 = −
√

2E43 V−1 = −
√

2E21. (6)

According to Holman, a Bose realization of Jordan–Schwinger type can be obtained by
mapping the generators Eij onto the following bilinear combinations of a set of boson creation
ab

i and destruction āb
i operators (i, j = 1, . . . , 4 and b = 1, 2):

Eij = a1
i ā1

j + a2
i ā2

j . (7)

Basis states can be defined as certain polynomials in the four operators a1
i and the five double

operators a14, a21 + a34, a23, a13, a24, applied to the boson vacuum |0〉, where

aij = a1
i a2

j − a1
j a

2
i . (8)

For further reference, the commutation relations obeyed by these operators are given here:[
Eij , a1

k

] = δjka
1
i

[
Eij , ā1

k

] = −δikā
1
j (9)

[Eij , akl] = δjkail + δjlaki [Eij , ākl] = −δikājl − δil ākj (10)

[āij , akl] = δikElj − δilEkj + δjlEki − δjkEli + 2δikδjl − 2δilδjk. (11)

The explicit form of the basis in a generic canonical representation 〈σ1, σ2〉 was derived
by Holman from the highest weight state (a13)

σ2
(
a1

1

)σ1−σ2 |0〉 with the recursive action of the
lowering operators introduced previously by Hecht [1].

In the case of the non-canonical reduction Sp(4) ⊃ SU(2) × U(1) a different approach
must be developed, because of the problem of the missing label, which makes it impossible
to obtain a suitable set of lowering operators: the multiplicity of states increases with the
dimension of the representation. However, as is well known, the series of representations
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〈p, 0〉 and 〈q, q〉(p, q = 1, 2, . . .) are multiplicity free: the three labels j , m and τ completely
specify the basis states and the matrices of generators are easily derived. Such representations
have been obtained in the past by different methods. Here their Bose realization is derived
and then used for the construction of generic representations 〈q + p, q〉.

2.1. The 〈p, 0〉 series

In a 〈p, 0〉 representation the state labels can take the following values: j = p/2, p/2 −
1, . . . , 0 or 1/2, for p even or odd; m = −j, . . . , j and τ = −j, . . . , j . These ranks
of values suggest a relation of embedding of 〈p, 0〉 in the representations of the group of
the symmetric top SU(2) × SU(2), which is defined by the direct product of two angular
momentum algebras with the same value of total momentum. Indeed, we can identify the
U(1) operator H with the zero component of the second angular momentum operator K0 and
look for the representations of the wider group. The boson realization of SU(2) × SU(2)

was given by Biedenharn and Louck [21]. Their result can be almost literally adapted to the
realization of the 〈p, 0〉 representations of sp(4). Indeed, the generators J0, J+ and J− as well
as K0 = H can be given as in equations (3) and (4) with Eij = a1

i ā1
j . The remaining (out of

sp(4) algebra) operators are K+ = i a1
3 ā1

2 − i a1
1 ā1

4 and K− = (K+)+. The orthonormal basis
for the representations of SU(2) × SU(2) was defined in [21] as the following set of boson
states, constructed only with the operators a1

1, a1
2, a1

3 and a1
4:

|〈p, 0〉τjm〉 = Np,j (det M)p/2−j Dj
mτ (M)|0〉. (12)

In this definition M denotes the matrix

M =
(

a1
1 ia1

4

a1
3 −ia1

2

)
.

The factor D
j
mτ (M) is the SU(2) rotation matrix:

Dj
mτ (M) = [(j + m)!(j − m)!(j + τ )!(j − τ )!]

1
2

×
∑

s

(
a1

1

)j+τ−s (
a1

3

)s (
ia1

4

)m−τ+s (−ia1
2

)j−m−s

(j + τ − s)!s!(m − τ + s)!(j − m − s)!
.

Finally, the normalization coefficient is given by the equation

Np,j =
[
(2j + 1)

/(p

2
− j
)

!
(p

2
+ j + 1

)
!

] 1
2

.

If operators Uκ of sp(4) are defined as in (5) with Eij = a1
i ā1

j , then, as can be checked
easily with the use of relations (9), their action on the basis vectors (12) leads to the well-known
reduced matrix elements in 〈p, 0〉 (the dependence on parameter p is implicit):

〈τ + 1, j + 1‖U‖τj 〉 = −i

[
(p − 2j)(p + 2j + 4)(j + τ + 1)(j + τ + 2)

4(j + 1)

] 1
2

〈τ + 1, j‖U‖τj 〉 = i

[
(p + 2)2(2j + 1)(j + τ + 1)(j − τ )

4j (j + 1)

] 1
2

(13)

〈τ + 1, j − 1‖U‖τj 〉 = −i

[
(p − 2j + 2)(p + 2j + 2)(j − τ − 1)(j − τ )

4j

] 1
2

.

The reduced matrix elements of the Hermitian conjugated vector operator V = U+ follow
from the relation

〈τ ′j ′‖V‖τj 〉 = (−1)j−j ′ 〈τj‖U‖τ ′j ′〉∗. (14)
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In summary, the basis (12) and the operators (3)–(6) with Eij = a1
i ā1

j give a realization
of the series of representations 〈p, 0〉 of sp(4), with p any positive integer.

2.2. The 〈q, q〉 series

In a representation 〈q, q〉 the possible values of the parameters are j = q, q − 1, . . . , 0;
m = −j, . . . , j and τ = q − j, q − j − 2, . . . , −(q − j). So, for each value of j, the
parameter τ takes only even values or only odd values, depending on q. Since operators Uκ

rise and operators Vκ lower the eigenvalues τ of the operator H by unity, changing their parity,
the matrix elements of Uκ and Vκ with j → j transitions are equal to zero. The non-zero
reduced matrix elements can be obtained by solving equations (A.10)–(A.13) given in the
appendix:

〈τ + 1, j + 1‖U‖τj 〉 = [(j + 1)(q + j + τ + 3)(q − j − τ )]
1
2

〈τ + 1, j − 1‖U‖τj 〉 = [j (q + j − τ + 1)(q − j + τ + 2)]
1
2

. (15)

The reduced matrix elements of operator V follow immediately from (14).
The Bose realization of the representations 〈q, q〉 can now be derived with the recurrent

action of the operators V1, V−1 and J− onto the highest weight state

|τ = q, j = 0, m = 0〉 = [q!(q + 1)!]−
1
2 (a13)

q |0〉. (16)

The values of parameters τ, j and m are obtained applying to the right-hand side H, J2 and
J0 defined as in (3) and (4), with Eij = a1

i ā1
j + a2

i ā
2
j . This and subsequent computations are

based on the use of the commutation relations (10).
The explicit form of matrix elements of operator V1 can be used in the derivation of the

expression

|τ = q − j, j, m = j 〉 = (−1)j

[
(q − j)!

q!j !2j

] 1
2

(V1)
j |τ = q, j = 0, m = 0〉. (17)

Computing the right-hand side with the bosonic version of the operators and vectors, this
equation takes the form

|τ = q − j, j, m = j 〉 = (a13)
q−j (a14)

j

√
(q + 1)!(q − j)!j !

|0〉. (18)

The following relation can be obtained in complete analogy (here k ≡ (q − j)/2):

|τ, j, m = j 〉 =
[

(q + j + τ + 2)!(q + j − τ + 1)!
(
k + τ

2

)
!
(
k − τ

2

)
!(2j + 1)!q!(

q − k + τ
2 + 1

)
!
(
k + j − τ

2

)
!(2q + 1)!2k− τ

2 +1

] 1
2

(−1)k− τ
2

×
min(k− τ

2 ,k+ τ
2 )∑

z=0

2
z
2 (j + z)!(V−1)

k− τ
2 −z(J−)2z

z!
(
k − τ

2 − z
)
!(2j + 1 + 2z)!

[(
j + k − τ

2 + z
)
!
(
k + τ

2 − z
)
!
] 1

2

×
∣∣∣q −

(
j + k − τ

2
+ z
)

, j + k − τ

2
+ z, m = j + k − τ

2
+ z
〉
. (19)

Once again, the use of the Bose operators and vectors leads to the following explicit expression,
which represents a generic basis vector for the 〈q, q〉 representation:

|〈q, q〉τ ≡ 2n, j, m〉 = Nqnjm

∑
x,y,z

(−1)z(j + z)!(j − m + 2z)!(a13)
2n+y(a24)

y

z!(2j + 1 + 2z)!(2n + y)!y!(k − n − z − y)!

× (a14)
k−n+m−z−y+x (a21 + a34)

j−m+2z−2x (a23)
k−n−z−y+x

(k − n + m − z − y + x)!(j − m + 2z − 2x)!x!
|0〉. (20)
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The parameter n ≡ τ/2 was introduced for convenience; it takes the values k, k − 1, . . . , −k,

with k = (q − j)/2. The sums are over all integer values allowed by the conditions:
0 � z � min(k − n, k + n), min(−2n, 0) � y � k −n − z, max(0, n − k − m + z + y) �
x � z + (j −m)/2. The normalization factor in (20) is

Nqnjm =
[

(j + m)!(k + n)!(k − n)!(q + j + 2n + 2)!(q + j − 2n + 1)!(2j + 1)

(j − m)!(q − k + n + 1)!(k + j − n)!(2q + 2)!

] 1
2

.

The basis (20) and the operators (3)–(6), with Eij = a1
i ā1

j + a2
i ā

2
j , give the Bose realization

of the series of representations 〈q, q〉, with q any positive integer.

2.3. The general case

In this subsection the proposed method of derivation of a generic representation 〈q + p, q〉
is presented. The vectors of the basis will be obtained as linear combinations of the basis
vectors of the reducible product of representations 〈p, 0〉 × 〈q, q〉. From now on, the explicit
labelling of specific representations cannot be avoided without confusion. It will be given,
when necessary, in the following short form: p0 for 〈p, 0〉 and qq for 〈q, q〉.

The basis of 〈p, 0〉 × 〈q, q〉 will be defined in standard form:

|pqn1n2j1j2nJM〉 =
∑
m1m2

〈j1j2m1m2 | JM〉|p0, n1j1m1〉|qq, n2j2m2〉. (21)

The parameters n1 ≡ τ1 and n2 ≡ τ2/2 were introduced for convenience. The eigenvalue
of the operator H is denoted by n = n1 + 2n2. The parameter J takes the values j1 + j2,

j1 + j2 − 1, . . . , |j1 − j2|. As usual, M ≡ m1 + m2.

The vectors on the right-hand side of (21) depend on two different (commuting) sets
of operators: a1

1(1), a1
2(1), a1

3(1), a1
4(1) for the 〈p, 0〉 representation and a13(2), a24(2),

a14(2), a21(2) + a34(2), a23(2), for the 〈q, q〉 representation. They are defined as in (12) and
(20). The generators of the algebra sp(4) still have the form (3)–(6), but now the operators
Eij in equation (7) are a sum of two commuting terms, Eij = Eij (1) + Eij (2), the first
operating on 〈p, 0〉 and the second on 〈q, q〉. In the Bose realization Eij (1) = a1

i (1)ā1
j (1) and

Eij(2) = a1
i (2)ā1

j (2) + a2
i (2)ā2

j (2).

The matrix elements of operators U and V in 〈p, 0〉 × 〈q, q〉 can be computed
with the standard expressions of the su(2) tensor algebra. For example, the operator
U = U(1) × I(2) + I(1) × U(2) has the following reduced matrix elements:

〈pqn′
1n

′
2j

′
1j

′
2J

′‖U‖pqn1n2j1j2J 〉 = (−1)j ′
1+1
√

(2J ′ + 1)(2J + 1)

×
[
δn′

2n2δj ′
2j2(−1)J+j ′

2

(
j ′

2 J j1

1 j ′
1 J ′

)
〈p0, n′

1j
′
1‖U‖p0, n1j1〉

+ δn′
1n1δj ′

1j1(−1)J ′+j2

(
j ′

1 J j2

1 j ′
2 J ′

)
〈qq, n′

2j
′
2‖U‖qq, n2j2〉

]
. (22)

The matrix elements on the right-hand side are given by equations (13) and (15).
The generic irreducible representation 〈q + p, q〉 is contained in the reducible product of

representations 〈p, 0〉 × 〈q, q〉. Indeed, the highest weight vector in 〈q + p, q〉 is the product
of the highest weight vectors of the factors 〈p, 0〉 and 〈q, q〉. All other vectors in 〈q + p, q〉,
and only these, can be reached by the action of the sp(4) generators and their powers onto the
highest weight, which is represented by the following not-degenerated vector:∣∣∣〈q + p, q〉n = q +

p

2
, J = p

2
, M = p

2

〉
=
[
a1

1(1)
]p

[a13(2)]q√
p!q!(q + 1)!

|0〉

=
∣∣∣pq, n1 = p

2
, n2 = q

2
, j1 = p

2
, j2 = 0, n = q +

p

2
, J = M = p

2

〉
. (23)
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The generic basis vectors of 〈q + p, q〉 will be defined as the linear combination

|〈p + q, q〉αnJM〉 =
∑

{n1n2j1j2}
|pqn1n2j1j2nJM〉AαnJ (n1n2j1j2). (24)

The parameter α is introduced here to label the multiplicity of these vectors. The sum in (24)
is taken over all the sets of parameters {n1n2j1j2} that lead to the same values nJ . In the cases
with only one such set, the coefficient A is irrelevant and can be chosen equal to unity.

The coefficients A in the expansion (24) will be determined following a method similar to
the one earlier applied by Sharp and Pieper in the construction of the canonical representations
on polynomial bases [2]. They proved that the polynomials corresponding to the 〈1, 0〉 term in
the reduction 〈1, 0〉×〈1, 1〉 = 〈2, 1〉+ 〈1, 0〉 must be orthogonal to every state of the 〈p +q, q〉
term in the reduction of the 〈p, 0〉 × 〈q, q〉 representation.

In the present Bose realization of non-canonical representations, the basis of such a 〈1, 0〉
term can be found in the form ,+

i |0〉/√20, i = 1, . . . , 4, where

,+
1 = {a1

1(1)[a21(2) + a34(2)] − 2a1
3(1)a14(2) + 2a1

4(1)a13(2)
}

,+
2 = −{a1

3(1)[a21(2) + a34(2)] − 2a1
1(1)a23(2) + 2a1

2(1)a13(2)
}

,+
3 = −i

{
a1

4(1)[a21(2) + a34(2)] + 2a1
2(1)a14(2) − 2a1

1(1)a24(2)
}

,+
4 = −i

{
a1

2(1)[a21(2) + a34(2)] + 2a1
4(1)a23(2) − 2a1

3(1)a24(2)
}

.

(25)

The condition of orthogonality 〈0|,i|〈p + q, q〉αnJM〉 = 0 means that the Hermitian
conjugated operators ,i should annihilate every state of the 〈p + q, q〉 term in the reduction of
〈p, 0〉 × 〈q, q〉. This will be the case if they annihilate at least one such state. That happens,
for example, with the highest weight state (23). In fact, the use of commutation relations (11)
gives (i = 1, . . . , 4)

,i

∣∣∣∣〈q + p, q〉n = q +
p

2
, J = p

2
, M = p

2

〉
= ,i

[
a1

1(1)
]p

[a13(2)]q

√
p!q!(q + 1)!

|0〉 = 0. (26)

Now, let G be any of the generators of the algebra and denote as |HW 〉 the highest weight
vector (23). Since ,i|HW 〉 = 0, then

,iG|HW 〉 = [,i, G]|HW 〉 + G,i|HW 〉 = 0 (27)

because the commutator [,i, G] is a linear combination of the operators ,i themselves. By
induction, the operators ,i annihilate every state of the representation 〈q +p, p〉 as all of them
can be reached by the successive action of the generators on |HW 〉.

Let us apply this statement to the basis vectors (24):

,i|〈p + q, q〉αnJM〉 =
∑

{n1n2j1j2}
,i |pqn1n2j1j2nJM〉AαnJ (n1n2j1j2) = 0. (28)

This condition originates a system of linear homogeneous algebraic equations for the unknown
coefficients A, which could be explicitly written if the matrix elements of ,i in 〈p, 0〉×〈q, q〉
were known. The use of commutation relations (9) and (10) allows us to prove that the
operators ,i represent the components of two irreducible tensor operators B(1/2) and C(1/2) with
respect to the SU(2) subgroup: B

(1/2)

1/2 = ,2/
√

2, B
(1/2)

−1/2 = −,1/
√

2 and C
(1/2)

1/2 = i,4/
√

2,

C
(1/2)

−1/2 = −i,3/
√

2. Then, equation (28) can be simplified applying the Wigner–Eckart
theorem:∑
{n1n2j1j2}

〈
p′q ′n′

1n
′
2j

′
1j

′
2n

′J ′ ∥∥B(1/2)
∥∥pqn1n2j1j2nJ

〉
AαnJ (n1n2j1j2) = 0 (29)

∑
{n1n2j1j2}

〈
p′q ′n′

1n
′
2j

′
1j

′
2n

′J ′ ∥∥C(1/2)
∥∥pqn1n2j1j2nJ

〉
AαnJ (n1n2j1j2) = 0. (30)
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The operators B(1/2) and C(1/2) themselves can be expressed as SU(2) tensor products:

B(1/2) =
√

3
[
Q(1/2) × S(1)

](1/2) −
√

2R(1/2)ā13(2) (31)

C(1/2) =
√

3
[
R(1/2) × S(1)

](1/2)
+

√
2Q(1/2)ā24(2). (32)

In these products the following factors operate on 〈p, 0〉:
Q

(1/2)

1/2 = ā1
3(1) Q

(1/2)

−1/2 = −ā1
1(1) R

(1/2)

1/2 = ā1
2(1) R

(1/2)

−1/2 = ā1
4(1) (33)

and the next ones operate on 〈q, q〉:
S

(1)

1 = ā23(2) S
(1)

0 = [ā12(2) + ā43(2)]/
√

2 S
(1)

−1 = ā14(2). (34)

The remaining factors ā13(2) and ā24(2) behave as scalars with respect to the subgroup SU(2)

and also operate on 〈q, q〉. The operators āij are Hermitian conjugated to the aij defined by
equation (8).

The reduced matrix elements in (29) and (30) can be calculated using the composition
relations for the product of two SU(2) irreducible tensor operators. For example,〈
p′q ′n′

1n
′
2j

′
1j

′
2n

′J ′ ∥∥B(1/2)
∥∥pqn1n2j1j2nJ

〉 = √2(2J ′ + 1)(2J + 1)

×

√

3




j1 j2 J
1
2 1 1

2
j ′

1 j ′
2 J ′


 〈p′0,n′

1j
′
1

∥∥Q(1/2)
∥∥p0,n1j1

〉 〈
q ′q ′,n′

2j
′
2

∥∥S(1)
∥∥qq,n2j2

〉

−
√

2




j1 j2 J
1
2 0 1

2
j ′

1 j ′
2 J ′


〈p′0, n′

1j
′
1

∥∥R(1/2)
∥∥p0, n1j1

〉 〈q ′q ′, n′
2j

′
2‖ā13‖qq, n2j2〉


 .

(35)

A similar expression can be given for the tensor C(1/2). Hence, it only remains to calculate
the reduced matrix elements of the different factors in expressions (31) and (32). This can be
done using the Bose realization of the previous subsections. The non-zero matrix elements
are (here p′ = p − 1, q ′ = q − 1)〈
p′0, n − 1

2
, j +

1

2

∥∥Q(1/2)
∥∥p0, nj

〉
=
[(p

2
− j
)
(j − n + 1)

] 1
2

(36)〈
p′0, n − 1

2
, j − 1

2

∥∥Q(1/2)
∥∥p0, nj

〉
=
[(p

2
+ j + 1

)
(j + n)

] 1
2

(37)〈
p′0, n +

1

2
, j +

1

2

∥∥R(1/2)
∥∥p0, nj

〉
= i
[(p

2
− j
)
(j + n + 1)

] 1
2

(38)〈
p′0, n +

1

2
, j − 1

2

∥∥R(1/2)
∥∥p0, nj

〉
= −i

[(p

2
+ j + 1

)
(j − n)

] 1
2

(39)

〈
q ′q ′, n, j + 1

∥∥S(1)
∥∥ qq, nj

〉 = [ (j + 1)(q + 1)(q − j + 2n)(q − j − 2n)

2q + 1

] 1
2

(40)

〈
q ′q ′, n, j − 1

∥∥S(1)
∥∥ qq, nj

〉 = [j (q + 1)(q + j + 2n + 1)(q + j − 2n + 1)

2q + 1

] 1
2

(41)

〈
q ′q ′, n − 1

2
, j ‖ā13‖ qq, nj

〉
=
[

(2j + 1)(q + 1)(q + j + 2n + 1)(q − j + 2n)

2(2q + 1)

] 1
2

(42)

〈
q ′q ′, n +

1

2
, j ‖ā24‖ qq, nj

〉
=
[

(2j + 1)(q + 1)(q + j − 2n + 1)(q − j − 2n)

2(2q + 1)

] 1
2

. (43)
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With these expressions the coefficients in equations (29) and (30) become explicitly defined.
It must be remarked that there p′ = p − 1, q ′ = q − 1 and J ′ = J ± 1/2. In general, there
are up to four equations for each possible set of parameters n′

1, n′
2, j ′

1, j ′
2, n′, J ′ defined in the

basis 〈p − 1, 0〉 × 〈q − 1, q − 1〉.
The condition of orthonormality of the basis (24) is an additional requirement given by

the equation ∑
{n1n2j1j2}

A∗
α′nJ (n1n2j1j2)AαnJ (n1n2j1j2) = δα′α (44)

which leads to the final solutions AαnJ (n1n2j1j2): (i) when, for specific values of n and J, the
unknowns AnJ do not appear in equations (29) and (30), and necessarily the set {n1n2j1j2}
corresponding to those values is unique, condition (44) determines those unknowns up to a
phase factor. They can be chosen equal to unity. (ii) When the range of the system of equations
(29) and (30) is by unity less than the number of different sets {n1n2j1j2} related to a given
pair n, J, then condition (44) gives a unique solution for the unknowns AnJ (n1n2j1j2) up to
a global phase factor. (iii) When the range of that system is by two or more unities less than
the number of different sets {n1n2j1j2}, then the solution for the unknowns AαnJ (n1n2j1j2)

is degenerate. The parameter α was introduced to enumerate such degeneracies. Within
each degenerated multiplet the freedom to perform unitary transformations preserving (44)
remains.

Once the unknowns A were found from equations (29) and (30), the reduced matrix
elements of the operator U can be computed using (22) in the expression

〈〈p + q, q〉α′n′J ′‖U‖〈p + q, q〉αnJ 〉 =
∑∑

A∗
α′n′J ′(n

′
1n

′
2j

′
1j

′
2)

× 〈pqn′
1n

′
2j

′
1j

′
2J

′‖U‖pqn1n2j1j2J 〉AαnJ (n1n2j1j2). (45)

Here the sums are defined over the sets {n′
1n

′
2j

′
1j

′
2} and {n1n2j1j2} as above.

The reduced matrix elements of the operator V follow immediately from
〈α′n′J ′‖V‖αnJ 〉 = (−1)J−J ′ 〈αnJ‖U‖α′n′J ′〉∗.

In the next section explicit results of these computations are presented, including the
series of representations 〈q + 4, q〉, which has not been derived by other methods.

3. Examples

As was mentioned above, representations with multiplicities of two or less were derived by
other authors in the past using different methods. We present our derivation for comparison
and completeness. The representations with multiplicities greater than two were difficult to
deal with by other methods. The series of representations 〈q + 4, q〉, with multiplicities three
or less, a result that has not been reported in the past, is presented here.

For the convenience of the reader, let us recall that the labelling of the equivalent
representations of O(5) is given by (ω1, ω2), where now ω1 = q + p

2 and ω2 = p

2 . In
the works of Hecht and co-authors, the parameter J is the total isotopic spin and is represented
as T , the parameter n is related to the number of particle eigenvalues and is represented as H1.

Our reduced matrix elements of the operator U are related to their R(5) Wigner coefficients
by the equivalence

〈〈q + p, q〉α′H ′
1T

′‖U‖〈q + p, q〉αH1T 〉 ∼ {2(2T + 1)[ω1(ω1 + 3) + ω2(ω2 + 1)]} 1
2

× 〈(ω1, ω2)kH1T ; (11)11‖(ω1, ω2)k
′H ′

1T
′〉.

As can be verified, the different methods lead to the same matrix elements only in the
cases of multiplicity one up to trivial phase factors. In the case of greater multiplicities the
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Table 1. 〈〈q + 1, q〉α′, n + 1, J + k‖U‖〈q + 1, q〉α, n, J 〉.
α′ α k q + J + n = even q + J + n = odd

1 1 1
[

(2J +1)(2J +3)(q−J−n)(q+J +n+3)
4(J +1)

] 1
2

[
(2J +1)(2J +3)(q−J−n+1)(q+J +n+4)

4(J +1)

] 1
2

1 1 −1
[

(2J−1)(2J +1)(q−J +n+3)(q+J−n+2)
4J

] 1
2

[
(2J−1)(2J +1)(q−J +n+2)(q+J−n+1)

4J

] 1
2

1 1 0 i
[

(2J +1)(q+J−n+2)(q+J +n+3)
4J (J +1)

] 1
2

i
[

(2J +1)(q−J−n+1)(q−J +n+2)
4J (J +1)

] 1
2

Table 2. 〈〈q + 2, q〉α′, n + 1, J + k‖U‖〈q + 2, q〉α, n, J 〉a .

α′ α k q + J + n = even

1 1 1
[

(J +1)(q−J−n+2)(q+J +n+5)[(q+1)(q+2)(q+3)−(q+3)n(n+1)−(q+2)J (J +2)] 2

F(q,n+1,J +1)F(q,n,J )

] 1
2

1 2 1
[

J (q+2)(q+3)(q−J +n+2)(q+j−n+3)(q+J +n+3)(q+J +n+5)
F(q,n+1,J +1)F(q,n,J )

] 1
2

2 1 1
[

(J +2)(q+2)(q+3)(q−J−n)(q−J−n+2)(q−J +n+2)(q+J−n+3)
F(q,n+1,J +1)F(q,n,J )

] 1
2

2 2 1
[

J (J +2)(q−J−n)(q+J +n+3)[(q+2)(q+4)2−(q+3)n(n+1)−(q+2)J (J +2)]2

(J +1)F(q,n+1,J +1)F(q,n,J )

] 1
2

1 1 −1
[

J (q−J +n+4)(q+J−n+3)[(q+2)3−(q+3)n(n+1)−(q+2)J 2]2

F(q,n+1,J−1)F(q,n,J )

] 1
2

1 2 −1 −
[

(J +1)(q+2)(q+3)(q−J−n+2)(q−J +n+2)(q−J +n+4)(q+J +n+3)
F(q,n+1,J−1)F(q,n,J )

] 1
2

2 1 −1 −
[

(J−1)(q+2)(q+3)(q−J−n+2)(q+J−n+1)(q+J−n+3)(q+J +n+3)
F(q,n+1,J−1)F(q,n,J )

] 1
2

2 2 −1
[

(J−1)(J +1)(q−J +n+2)(q+J−n+1)[(q+2)(q+3)2−(q+3)n(n+1)−(q+2)J 2]2

JF(q,n+1,J−1)F(q,n,J )

] 1
2

1 1 0 −
[

(2J +1)(q+2)(q−J−n+2)(q+J−n+3)
F(q,n,J )

] 1
2

1 2 0
[

(2J +1)(q+3)(q−J +n+2)(q+J +n+3)(q−n+2)2

J (J +1)F(q,n,J )

] 1
2

a F(q, n, J ) = (q + 2)2(q + 3) − (q + 3)n2 − (q + 2)J (J + 1).

matrices are different because of the different labelling scheme. They should be related by
unitary transformations.

The expressions given below were checked with the equations listed in the appendix,
which follow directly from the commutation relations of the algebra. They are given for
states which have, in general, multiplicities greater than 1. For states with lesser multiplicities
(perimeter or next to perimeter states) the allowed values of parameter α are explicitly stated.
These values follow from the unique assumption that α = 1 in the corner states with J = p

2
and n = −(q + p

2

)
, since all the other states can be reached from these corner states by the

action of the operator U (and the trivial action of the operator J). Let us recall once again that
the parameter q can take any positive integer value.

Series 〈q + 1, q〉. The non-zero reduced matrix elements of the operator U are presented
in table 1. This is a simple case with multiplicities equal to 1. The allowed values of the
parameters are J = 1

2 , 3
2 , . . . , q + 1

2 and n = (q − J + 1), (q − J + 1) − 1, . . . , −(q − J + 1).

Series 〈q + 2, q〉 . In this case the values of the parameters are: J = 0, 1, . . . , q + 1 and
n = (q − J + 2), (q − J + 2) − 1, . . . , −(q − J + 2) for J �= 0, n = q, q − 2, . . . , −q

for J = 0. The reduced matrix elements of the operator U applied to basis vectors with
parameters satisfying the condition q + J + n = even, are presented in table 2. Those vectors
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Table 3. 〈〈q + 2, q〉α′, n + 1, J + k ‖U‖ 〈q + 2, q〉α, n, J 〉a.

α′ α k q + J + n = odd

1 1 1
[

J (J +2)(q−J−n+1)(q+J +n+4)
J +1

] 1
2

1 1 −1
[

(J−1)(J +1)(q−J +n+3)(q+J−n+2)
J

] 1
2

1 1 0 −
[

(2J +1)(q+2)(q−J +n+3)(q+J +n+4)
F(q,n+1,J )

] 1
2

2 1 0 −
[

(2J +1)(q+3)(q−J−n+1)(q+J−n+2)(q+n+3)2

J (J +1)F(q,n+1,J )

] 1
2

a F(q, n, J ) as in table 2.

Table 4. 〈〈q + 3, q〉α′, n + 1, J + k‖U‖〈q + 3, q〉α, n, J 〉a .

α′ α k q + J + n = even

1 1 1
[

(2J +1)(2J +5)(q−J−n)(q+J +n+5)G(q,n,J )
4(J +1)G(q,n+1,J +1)

] 1
2

1 2 1 0

2 1 1 −
[

12(q+2)(q+4)(q−J +n+3)(q+J−n+4)(q+3j+n+7)2

(J +1)G(q,n+1,J +1)G(q,n,J )

] 1
2

2 2 1
[

(2J−1)(2J +3)(q−J−n+2)(q+J +n+3)G(q,n+1,J +1)
4(J +1)G(q,n,J )

] 1
2

1 1 −1
[

(2J−1)(2J +3)(q−J +n+5)(q+J−n+4)G(q,n+1,J−1)
4JG(q,n,J )

] 1
2

1 2 −1 −
[

12(q+2)(q+4)(q−J−n+2)(q−J +n+3)(q−J +n+5)(q+J +n+3)
JG(q,n+1,J−1)G(q,n,J )

] 1
2

2 1 −1 0

2 2 −1
[

(2J−3)(2J +1)(q−J +n+3)(q+J−n+2)G(q,n,J )
4JG(q,n+1,J−1)

] 1
2

1 1 0 −i
[

9(2J +1)(q−J−n+2)(q−J +n+3)(q+J−n+4)(q+J +n+5)(2q+2j+7)2

4J (J +1)G(q,−n−1,J )G(q,n,J )

] 1
2

1 2 0 i
[

3(2J−1)(2J +1)(2J +3)(q+2)(q+4)(q+J +n+3)(q+J +n+5)(q+J−n+4)2

J (J +1)G(q,−n−1,J )G(q,n,J )

] 1
2

2 1 0 i
[

3(2J−1)(2J +1)(2J +3)(q+2)(q+4)(q+J−n+2)(q+J−n+4)(q+J +n+5)2

J (J +1)G(q,−n−1,J )G(q,n,J )

] 1
2

2 2 0 i
[

(2J +1)(q−J−n+2)(q−J +n+3)(q+J−n+2)(q+J +n+3)[14q+55+2(4q+17)J ]2

4J (J +1)G(q,−n−1,J )G(q,n,J )

] 1
2

a G(q, n, J ) = (q + 2)(4q + 15) + (4q + 17)n + [4q2 + 30q + 53 + 2(2q + 7)(J + n)]J .

have in general multiplicities equal to two, excluding the states with J = 0 and the states with
J ±n = q + 2, which are the perimeter states. In the perimeter states α = 1. The basis vectors
with q + J + n = odd are not degenerate and the corresponding matrix elements are shown in
table 3.

Series 〈q + 3, q〉. Here the parameters take the values J = 1
2 , 3

2 , . . . , q + 3
2 and n = (q −

J + 3), (q−J + 3)−1, . . . , −(q−J + 3) for J �= 1
2 , n = (q + 1

2

)
,
(
q + 1

2

)− 1, . . . , − (q + 1
2

)
for J = 1

2 . The reduced matrix elements are presented in tables 4 and 5, where q + J + n is an
even and odd integer respectively. In general, the multiplicity of the basis vectors is two, with
the exception of the following perimeter, or next to perimeter states: (i) For J = 0 and n any
of the allowed values then α = 1; (ii) for q + J + n = even, if J + n = q + 2 then α = 2 and
if J − n = q + 3 then α = 1 and (iii) for q + J + n = odd, if J − n = q + 2 then α = 2 and if
J + n = q + 3 then α = 1.
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Table 5. 〈〈q + 3, q〉α′, n + 1, J + k‖U‖〈q + 3, q〉α, n, J 〉a,b.

α′ α k q + J + n = odd

1 1 1
[

(2J +1)(2J +5)(q−J−n+3)(q+J +n+6)G(q,−n,J )
4(J +1)G(q,−n−1,J +1)

] 1
2

1 2 1 0

2 1 1 −
[

12(q+2)(q+4)(q−J−n+1)(q−J−n+3)(q−J +n+2)(q+J−n+3)
(J +1)G(q,−n−1,J +1)G(q,−n,J )

] 1
2

2 2 1
[

(2J−1)(2J +3)(q−J−n+1)(q+J +n+4)G(q,−n−1,J +1)
4(J +1)G(q,−n,J )

] 1
2

1 1 −1
[

(2J−1)(2J +3)(q−J +n+2)(q+J−n+3)G(q,−n−1,J−1)
4JG(q,−n,J )

] 1
2

1 2 −1 −
[

12(q+2)(q+4)(q−J−n+3)(q+J +n+4)(q+3J−n+3)2

JG(q,−n−1,J−1)G(q,−n,J )

] 1
2

2 1 −1 0

2 2 −1
[

(2J−3)(2J +1)(q−J +n+4)(q+J−n+1)G(q,−n,J )
4JG(q,−n−1,J−1)

] 1
2

1 1 0 −i
[

9(2J +1)(q−J−n+1)(q−J−n+3)(q−J +n+2)(q−J +n+4)(2q+2J +7)2

4J (J +1)G(q,n+1,J )G(q,−n,J )

] 1
2

1 2 0 i
[

3(2J−1)(2J +1)(2J +3)(q+2)(q+4)(q−J−n+1)(q−J +n+4)(q+J−n+3)(q+J +n+4)
J (J +1)G(q,n+1,J )G(q,−n,J )

] 1
2

2 1 0 i
[

3(2J−1)(2J +1)(2J +3)(q+2)(q+4)(q−J−n+3)(q−J +n+2)(q+J−n+3)(q+J +n+4)
J (J +1)G(q,n+1,J )G(q,−n,J )

] 1
2

2 2 0 i

[
(2J +1)G2

1(q,n,J )

4J (J +1)G(q,n+1,J )G(q,−n,J )

] 1
2

a G(q, n, J ) as in table 4.
b G1(q, n, J ) = (q + 2)(14q2 + 101q + 183) − (14q + 55)n(n + 1) + {8q3 + 94q2 + 350q + 415 + 2(4q + 17)[J 2 −
n(n + 1)] + (16q2 + 114q + 209)J }J .

Series 〈q + 4, q〉. In this example the parameters take the values J = 0, 1, . . . , q + 2
and n = (q − J + 4), (q − j + 4) − 1, . . . , −(q − J + 4) whenever J �= 0 or 1. If J = 0
then n = q, q − 2, . . . , −q and if J = 1 then n = q + 1, q, . . . , −(q + 1).

The basis vectors of the series 〈q + 4, q〉 with parameters satisfying q +J +n = even, have
in general multiplicities equal to three, and the corresponding matrix elements are presented
in table 6. The following exceptions apply: (i) if J ± n = q + 4 or if J = q + 2 and n = 0
then α = 1; (ii) if J = 1 and n = ±(q + 1) then α = 2; (iii) if J = 0 and n takes any
allowed value then α = 3; (iv) if J ± n = q + 2 then α = 1 and 2 and (v) if J = 1 and
n = q − 1, q − 3, . . . , −(q − 1) then α = 2 and 3.

The matrix elements of the operator U applied to states with q + J + n = odd are given in
table 7. The multiplicity of the basis vectors is two in general, with the following exceptions:
(i) if J ± n = q + 3 then α = 1 and (ii) if J = 0 and n takes any of the allowed values then
α = 2.

In tables 6 and 7 the following expressions are introduced:

W(q, n, J ) = (q + 3)(q + 4)(q + 5) − (q + 2)n2 − (q + 5)J (J + 1)

X(q, n, J ) = (q + 3)(q + 5)2 − (q + 3)n2 − (q + 6)J (J + 1)

Y (q, n, J ) = 2(q + 3)[(q + 5)2 − n2][(q + 3)(q + 4)(q + 5) − (q + 2)n2]

− [(q + 5)(4q3 + 46q2 + 175q + 222) − 6(q + 3)n2

− (2q2 + 16q + 33)J (J + 1)]J (J + 1)
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Table 6. 〈〈q + 4, q〉α′, n + 1, J + k‖U‖〈q + 4, q〉α, n, J 〉.
α′ α k q + J + n = even

1 1 1
[

(J−1)(J +3)(q−J−n+4)(q+J +n+7)Y1(q,n,J )2

(j+1)Y (q,n+1,J +1)Y (q,n,J )

] 1
2

1 2 1 −
[

2(J +2)(J +3)(q+3)(q+5)(q−J +n+4)(q+J−n+5)(q+J +n+5)(q+J +n+7)Z(q,n,J )
(J +1)Y (q,n+1,J +1)Y (q,n,J )

] 1
2

1 3 1 0

2 1 1 −
[

2J (J−1)(q+3)(q+5)(q−J−n+2)(q−J−n+4)(q−J +n+4)(q+J−n+5)Z(q,n+1,J +1)
(J +1)Y (q,n+1,J +1)Y (q,n,J )

] 1
2

2 2 1
[

J (J +2)(q−J−n+2)(q+J +n+5)Y2(q,n,J )2

(J +1)Y (q,n+1,J +1)Z(q,n+1,J +1)Y (q,n,J )Z(q,n,J )

] 1
2

2 3 1 −
[

6(J +2)(q+2)(q+4)(q−J +n+2)(q+J−n+3)(q+J +n+3)(q+J +n+5)Y (q,n+1,J +1)
Z(q,n+1,J +1)Z(q,n,J )

] 1
2

3 1 1 0

3 2 1 −
[

6J (q+2)(q+4)(q−J−n)(q−J−n+2)(q−J +n+2)(q+J−n+3)Y (q,n,J )
Z(q,n+1,J +1)Z(q,n,J )

] 1
2

3 3 1
[

(J−1)(q−J−n)(q+J +n+3)[Y1(q,n,J )+2(2q+3)(2q+7)n(n+1)J (J +2)]2

Z(q,n+1,J +1)Z(q,n,J )

] 1
2

1 1 −1
[

(J−2)(J +2)(q−J +n+6)(q+J−n+5)Z1(q,n,J )2

JY (q,n+1,J−1)Y (q,n,J )

] 1
2

1 2 −1
[

2(J−2)(J−1)(q+3)(q+5)(q−J−n+4)(q−J +n+4)(q−J +n+6)(q+J +n+5)Z(q,n,J )
JY (q,n+1,J−1)Y (q,n,J )

] 1
2

1 3 −1 0

2 1 −1
[

2(J +1)(J +2)(q+3)(q+5)(q−J−n+4)(q+J−n+3)(q+J−n+5)(q+J +n+5)Z(q,n+1,J−1)
JY (q,n+1,J−1)Y (q,n,J )

] 1
2

2 2 −1
[

(J−1)(J +1)(q−J +n+4)(q+J−n+3)Z2(q,n,J )2

JY (q,n+1,J−1)Z(q,n+1,J−1)Y (q,n,J )Z(q,n,J )

] 1
2

2 3 −1
[

6(J−1)(q+2)(q+4)(q−J−n+2)(q−J +n+2)(q−J +n+4)(q+J +n+3)Y (q,n+1,J−1)
Z(q,n+1,J−1)Z(q,n,J )

] 1
2

3 1 −1 0

3 2 −1
[

6(J +1)(q+2)(q+4)(q−J−n+2)(q+J−n+1)(q+J−n+3)(q+J +n+3)Y (q,n,J )
Z(q,n+1,J−1)Z(q,n,J )

] 1
2

3 3 −1
[

J (q−J +n+2)(q+J−n+1)[Z1(q,n,J )+2(2q+3)(2q+7)n(n+1)(J−1)(J +1)]2

Z(q,n+1,J−1)Z(q,n,J )

] 1
2

1 1 0 −
[

2(2J +1)(q+3)(q−J−n+4)(q+J−n+5)[2(q+n+4)W(q,n+1,J )+(J−1)(J−2)(n+1)(2q+7)]2

J (J +1)W(q,n+1,J )Y (q,n,J )

] 1
2

1 2 0 −
[

(J−1)(J +2)(2J +1)(q+5)(q−J +n+4)(q+J +n+5)Z(q,n,J )
J (J +1)W(q,n+1,J )Y (q,n,J )

] 1
2

1 3 0 0

2 1 0
[

2(J−1)(J +2)(2J +1)(q+2)(q+3)(q+5)(q−J−n+2)(q+J−n+3)[(q−J +4)2−n2][(q+J +5)2−n2]
J (J +1)W(q,n+1,J )Y (q,n,J )

] 1
2

2 2 0 −
[

(2J +1)(q+2)(q−J−n+2)(q+J−n+3)[(q+n+4)Y (q,n,J )−2n(J−1)(J +2)(2q+7)X(q,n,J )]2

J (J +1)W(q,n+1,J )Y (q,n,J )Z(q,n,J )

] 1
2

2 3 0 −
[

6(2J +1)(q+4)(q−J +n+2)(q+J +n+3)W(q,n+1,J )
Z(q,n,J )

] 1
2

Z(q, n, J ) = Y (q, n, J ) − 2(2q + 7){2(q + 3)2[(q + 5)2 − n2]

− [2q2 + 16q + 33 + (2q + 3)n2]J (J + 1)}
W1(q, n, J ) = (q − n + 3)Y (q, n + 1, J ) + 2(2q + 7)(n + 1)(J − 1)(J + 2)X(q, n + 1, J )

Y1(q, n, J ) = 2(q + 2)(q + 3)(q − n + 3)(q − n + 5)(q + n + 5)2 − 2(q + 3)[(q + 2)(2q + 9)

− 3(n + 1)(J + 2)]nJ − (q + 5)(2q + 7)(4q2 + 29q + 48)J

− (4q4 + 62q3 + 347q2 + 823q + 681)J 2 + (2q2 + 16q + 33)(J + 4)J 3
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Table 7. 〈〈q + 4, q〉α′, n + 1, J + k‖U‖〈q + 4, q〉α, n, J 〉.
α′ α k q + J + n = odd

1 1 1
[

(J−1)(J +3)(q−J−n+3)(q+J +n+6)[(q+2)(q+4)(q+5)−(q+2)n(n+1)−(q+5)J (J +2)]2

(J +1)W(q,n+1,J +1)W(q,n,J )

] 1
2

1 2 1 −
[

(J +2)(J +3)(q+2)(q+5)(q−J +n+3)(q+J−n+4)(q+J +n+4)(q+J +n+6)
(J +1)W(q,n+1,J +1)W(q,n,J )

] 1
2

2 1 1 −
[

J (J−1)(q+2)(q+5)(q−J−n+1)(q−J−n+3)(q−J +n+3)(q+J−n+4)
(J +1)W(q,n+1,J +1)W(q,n,J )

] 1
2

2 2 1
[

J (J +2)(q−J−n+1)(q+J +n+4)[(q+3)(q+5)2−(q+2)n(n+1)−(q+5)J (J +2)]2

(J +1)W(q,n+1,J +1)W(q,n,J )

] 1
2

1 1 −1
[

(J−2)(J +2)(q−J +n+5)(q+J−n+4)[(q+3)2(q+5)−(q+2)n(n+1)−(q+5)J 2]2

JW(q,n+1,J−1)W(q,n,J )

] 1
2

1 2 −1
[

(J−2)(J−1)(q+2)(q+5)(q−J−n+3)(q−J +n+3)(q−J +n+5)(q+J +n+4)
JW(q,n+1,J−1)W(q,n,J )

] 1
2

2 1 −1
[

(J +1)(J +2)(q+2)(q+5)(q−J−n+3)(q+J−n+2)(q+J−n+4)(q+J +n+4)
JW(q,n+1,J−1)W(q,n,J )

] 1
2

2 2 −1
[

(J−1)(J +1)(q−J +n+3)(q+J−n+2)[(q+4)2(q+5)−(q+2)n(n+1)−(q+5)J 2]2

JW(q,n+1,J−1)W(q,n,J )

] 1
2

1 1 0
[

2(2J +1)(q+3)(q−J +n+5)(q+J +n+6)[2(q−n+3)W(q,n,J )−(2q+7)n(J−1)(J +2)]2

J (J +1)Y (q,n+1,J )W(q,n,J )

] 1
2

1 2 0
[

2(J−1)(J +2)(2J +1)(q+2)(q+3)(q+5)(q−J +n+5)(q+J +n+6)[(q−J +3)2−n2][(q+J +4)2−n2]
J (J +1)Y (q,n+1,J )W(q,n,J )

] 1
2

2 1 0 −
[

(J−1)(J +2)(2J +1)(q+5)(q−J−n+3)(q+J−n+4)Z(q,n+1,J )
J (J +1)Y (q,n+1,J )W(q,n,J )

] 1
2

2 2 0
[

(2J +1)(q+2)(q−J +n+3)(q+J +n+4)W1(q,n,J )2

J (J +1)Y (q,n+1,J )Z(q,n+1,J )W(q,n,J )

] 1
2

3 1 0 0

3 2 0 −
[

6(2J +1)(q+4)(q−J−n+1)(q+J−n+2)W(q,n,J )
Z(q,n+1,J )

] 1
2

Y2(q, n, J ) = Y (q, n, j)Z(q, n + 1, J + 1) + 6(2q + 7)(n + 1)(J + 1)[(q + 2)(q + 3)

− (q − 2J + 2)n − (q + 3)J ]Y (q, n, J ) − 2(2q + 7)n(J − 1)[(q + 3)(q + 5)

− (q − 2J + 3)n − (q + 4)J ]Z(q, n + 1, J + 1)

−2(2q + 7)n(n + 1)J [3(J + 1)(2J + 2n + 5)Y (q, n, J )

− (J − 1)(2J + 2n + 1)Z(q, n + 1, J − 1)]/(q + J + n + 5)

Z1(q, n, J ) = Y1(q, n, J − 1) + 2(q + 2)(q + 3)(2q + 9)(2n + 1)J

Z2(q, n, J ) = Y (q, n + 1, J − 1)Z(q, n, J ) − 6(2q + 7)nJ [q2 + 7q + 13 + (q − 2J + 4)n

− (q + 5)J ]Y (q, n + 1, J − 1) + 2(2q + 7)(n + 1)(J − 2)[(q + 4)(q + 6)

+ (q − 2J + 5)n − (q + 6)J ]Z(q, n, J )

− 2(2q + 7)n(n + 1)(J − 1)[3J (2J − 2n + 1)Y (q, n + 1, J − 1)

− (J − 2)(2J − 2n − 3)Z(q, n, J )]/(q + J − n + 3).
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Appendix

The reduced matrix elements of operators U and V satisfy a set of equations that follows from
the commutation relations (1). They are presented in this appendix. For convenience, the non-
vanishing matrix elements will be described by the matrices PU(τ, j), OU(τ, j), MU(τ, j)

and PV(τ, j), OV(τ, j), MV(τ, j), defined as follows:

PU(τ, j)α′α = 〈α′τ + 1j + 1 ‖U‖ ατj 〉 PV (τ, j)α′α = 〈α′τ − 1j + 1 ‖V‖ ατj 〉 (A.1)

OU(τ, j)α′α = 〈α′τ + 1j ‖U‖ ατj 〉 OV (τ, j)α′α = 〈α′τ − 1j ‖V‖ ατj 〉 (A.2)

MU(τ, j)α′α = 〈α′τ + 1j − 1 ‖U‖ ατj 〉 MV (τ, j)α′α = 〈α′τ − 1j − 1 ‖V‖ ατj 〉.
(A.3)

It is also convenient to introduce the matrix products

X1(τ, j) = PU(τ, j)+PU(τ, j) X4(τ, j) = PV(τ, j)+PV(τ, j) (A.4)

X2(τ, j) = OU(τ, j)+OU(τ, j) X5(τ, j) = OV(τ, j)+OV(τ, j) (A.5)

X3(τ, j) = MU(τ, j)+MU(τ, j) X6(τ, j) = MV(τ, j)+MV(τ, j). (A.6)

The action of commutation relations (1) on a generic state |ατJM〉, with the use of (2),
leads to the following set of equations for the unknown reduced matrix elements:

PU(τ − 1, j + 1)PV(τ, j) = PV(τ + 1, j + 1)PU(τ, j) (A.7)√
2j + 1[(j + 1)OV(τ + 1, j + 1)PU(τ, j) + OU(τ − 1, j + 1)PV(τ, j)]

=
√

j (j + 2)(2j + 3)PU(τ − 1, j)OV(τ, j) (A.8)√
2j + 1[OV(τ + 1, j + 1)PU(τ, j) + (j + 1)OU(τ − 1, j + 1)PV(τ, j)]

=
√

j (j + 2)(2j + 3)PV(τ + 1, j)OU(τ, j) (A.9)

X1(τ, j) + X2(τ, j) + X3(τ, j) = (2j + 1)[C2 − j (j + 1) − τ 2 − 3τ ]I (A.10)

X4(τ, j) + X5(τ, j) + X6(τ, j) = (2j + 1)[C2 − j (j + 1) − τ 2 + 3τ ]I (A.11)

(2j + 1)[X1(τ, j) − X6(τ, j)] + j (2j + 3)[X2(τ, j) − X5(τ, j)] = −τλI (A.12)

(j + 1)(2j + 1)X1(τ, j) − (2j + 3)[(j + 1)X4(τ, j) + X5(τ, j)] − X6(τ, j) = −(j + τ )λI.

(A.13)

Here, C2 = [(2q + p)(2q + p + 6) + p(p + 2)]/4, λ = (2j + 1)(2j + 2)(2j + 3) and I is the
unit matrix of appropriate dimension.
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